Entries tagged with “lighting”.

Way back in January I bought myself a new set of cycle lights for commuting in the dark, namely the Dinotte 400L Road Rider’s experience. It was a wee bit more than I really wanted to pay, due to the weakness of the Pound against the Dollar, but I am really pleased with the lights. Whilst I have commented on these lights a few times in this blog, I just realised that haven’t posted a photo of them in action, until now…

Dinotte 400L Road Rider's Experience

Note that the front wheel has turned towards the wall, so you are not seeing the full throw of the light. I find that I use the rear light (tail light) the most, as it bright enough to make a difference in day light. Used in flashing mode, I am reliably informed that it can be seen for over a mile (1.6Km) in full sunlight. Everyone I know who has seen it in action has commented on it. Also, I know at least one person who has been so impressed he also bought the same light set. They are without doubt the brightest cycle lights I have ever owned and well worth buying.

More more posts about cycle lights:

Possibly Related Posts: (automatically generated)

I was talking to a friend at work today about rear cycle lights and we decided to take a couple of photos as a comparison, of I thought I would post them here just in case anyone should be interested. First the DiNotte 140L v a Smart 1/2 W LED 3 Function light (which is said to be visible from up to 800 metres, according to the sales blurb).
Rear light comparison 1
And one with the Cateye TL-LD600 turned on, as you can see from the flare these photos were taken on a bright sunny day.
Rear light comparison 2

More more posts about cycle lights:

Possibly Related Posts: (automatically generated)

We recently had a new bathroom fitted and as it is an internal room lighting is important. When we first moved, in the old bathroom gave a good impression of the Black Hole of Calcutta (well more like the green and blue hole of Calcutta, an interesting colour scheme), lit by a single 40w tungsten bulb. On the first day, all the old tungsten bulbs where removed and replaced with modern low energy bulbs. In the bathroom I put in a 14w, which has a light output equivalent to a 75w tungsten bulb, a considerable improvement straight away.

Putting in a new bathroom gave the opportunity to make more radical changes. My first thought was to use halogen down lighters and flood the room with light, however there are a few issue with halogen down lighters. First off, care must been taken when fitting them into an existing ceiling, as they can be a fire risk due to the heat they generate. Secondly, all that heat is just wasted energy, with most of the energy being converted into heat rather than light. While halogen bulbs while they are more energy efficient than Edison incandescent bulbs, they are still not the most efficient means of lighting. The search was on for energy efficient replacements for the standard GU10 halogen bulb.

Most people are now aware of low energy (compact fluorescent lamps or CFL) bulbs, even if not everybody is using them. There are now CFLs which can be used to replace the old fashioned tungsten GU10 bulbs (GU10 refers to the type of fitting). They are at the present time more expensive (£5 to £6 per bulb) than the halogens they replace (£0.79 per bulb), but the CFs use less energy and last longer, but more on that later.

However I wasn’t convinced this was the most energy efficient solution. Through my interest in cycling I knew that in high end cycle lights halogen bulbs have now been entirely replaced by LED lights. Indeed the popularity of 24 hour cycle racing, where the race continues through the night (at the extreme is the Strathpuffer with 17 hours of darkness), have helped to drive development in this area, as bright and energy efficient lights are important to this sport. If you are hurtling down a forest track in the dark, you want plenty of light to find your way. Yet at the same time you don’t want to be lugging a heavy battery about, so low energy consumption is essential. The German light makers Lupine show just what can be done with their Betty 14, a 1500 lumen 22w light which can run for 6 hours on a 14.5 Ah Li-Ion bottle battery. The whole setup only weighs 810g. Ok, so it comes at a price (£685.00, just in case you want to know what I would like for Christmas) and a 1500 lumen lamp is way more brightness that the average domestic lighting system would normally use, but has any of this high end technology filtered its way down to the domestic lighting market?

Well yes it has, you can get LED lights as replacements for halogen bulbs, but there are a few differences in what is required from a bike light compared with domestic room lighting. As stated above, top end bike lights are far brighter than domestic lighting systems, also there is the colour of the light to be taken into account. As light colour and temperature can be a wee bit confusing, here is a short digression into light colour/temperature.

A lighting designer will describe white light as being cold or warm depending on whether it is towards the yellow end of the spectrum or the blue end, with yellow being warm and blue cold. On the other hand, a lighting engineer will describe white light according to its temperature in degrees Kelvin (°K), to them a “warm white” light has a temperature of 2700°K and the “cold white” a temperature of 5000°K. So why the difference? The designer gives a subjective description of the light, and we have become accustomed to the yellowish white light of the tungsten bulb in most domestic lighting situations. Before that we would have experienced the light of oil lamps or candles, which have a similar coloured light. This light is described as being warm. Whereas white light which is to the blue end of the spectrum, and is closer in colour to that of daylight, is regarded as harsh and cold. The engineer on the other hand describes light according to the level of energy required to generate it. For millennia metal workers have known that if you heat a piece of metal it will start to glow, at first red, then as you heat further straw yellow and eventually it will become white hot. At this point metals start to melt, and if you are using arc welding gear to melt the metal, you will notice that the electrical sparks give out a blue light as they are hotter still. The temperatures at which these colours are produced can be measured, hence colour temperature is given in °K. Ok so back to the subject at hand.

Most bike lights produce a “cold” white light with a temperature of about 5000°K, this is often considered too harsh and cold for use in a living area. So for domestic use there are GU10 LED lights which can replace the bog standard halogen down lighter, these usually come as a choice of either warm white (3200°K) or cool light (5000°K). Power usage ranges from 1w to 4.3w and their light output can be equivalent to 35w to 50w halogen blubs (specifications can vary between manufactures). As this is in many ways still a cutting edge technology, prices are on the high side at between £6 and £18 a bulb.

So to the big question, is it worth spending £18 on a bulb when you can get a halogen bulb for £0.79 to do the same thing? The answer depends on the time scale you look at and how much you use it, to find out it is necessary to carry out a little economic analysis. To do this I, have developed a simple tool to compare the energy usage and running cost of three different types of downlighter type lights.

Basically halogens are cheap to buy but use a lot of expensive energy and have a short lifespan (typically about 2000 hrs). Whereas LEDs are expensive to buy, but use very little energy and have a very long lifespan (typically about 50000 hrs), CFLs are somewhere in between. To see which is the better value in the longer term I chose the following scenario, using four bulb fitting, for four hours a day (OK so that is a wee bit longer that we normally use the bathroom per day) using electricity at a costing of £0.18 per kWh (a rate taken from an old bill, before the recent price hike!), what would be the total running cost per year? In the first year the total cost of the halogens would be £39.10, using CFLs would be £12.96 and using LEDs would be £4.90. This suggest that saving in energy costs of using the LEDs would repay the capital investment is a little over two years. However at the current time the cost of energy is going up and the cost LEDs is coming down, so this could soon be even shorter!

Possibly Related Posts: (automatically generated)

At this time of year when (at least here in the northern hemisphere) the clocks go back, the cycle commuter’s mind turns to lights. Usually, just after fumbling around in the bottom of the pannier whilst standing in a darkened bike shed, the realisation slowly creeps across your mind that your lights are still in the cupboard at home. Sometimes you do get lucky and find that you have remembered to bring them with you after all. However, the sense of relief is often short-lived as, when you turn on the lights, you find that the batteries are flat.

For this reason, some years ago, I decided to leave a pair of cheap lights permanently mounted on my bike. They look so tacky that no self-respecting bike thief has yet removed them. These are low powered LED flashy type things which are just enough to keep you street legal and get you home, if there is plenty of street lighting so that you can see where you are going.

Back when I was growing up, battery powered cycle lights were big clunky things, with a light output of little more than that of a candle in a jam jar. I however was the proud owner of a dynamo which I used to power the front light alone, although it was designed to power both front and rear lights. The consequence of this was that the single front light was far brighter than that of any of my friends, but bulb life was rather short. As the dynamo was of the tyre driven bottle type, which works by rubbing on the front tyre, it wasn’t just the bulbs that were short lived. Another consequence of using the dynamo was that it felt like you were cycling with the brakes on. Not that this was a problem when cycling with friends, having the brightest light meant that they tended to follow rather than race ahead on the unlit rural roads around where we lived. On nights when the moon was full, I would often ride without the dynamo running. On the rare occasions when there was a car coming I would just lean forward and just flick the dynamo on, ah those were the days.

Now I do understand that you can get hub dynamos these days. There are advantages to using these systems, such as there are no batteries to go flat and, as the lights are permanently mounted, you can’t accidentally leave them at home. But somehow they never appealed to me. This is partly due to the prospect of having to lug them around and take the drag hit all through the summer when, here in Scotland, they won’t get much use. Also, having a lot of expensive lighting attached to the bike all of the time might increase the risk of theft or vandalism.

What does appeal to me is the new LED technology, take for instance Lupine’s new Betty 12. It has seven High Power new generation LEDs with a range of power settings from 0.25W to 22W. The 0.25W setting is as bright as the brightest current conventional cycle light, but with a burn time of 336 hours (that is 2 weeks non-stop!). On the 22W setting the burn time drops to 6 hours, but the light output increases to 1400 Lumen (and no that isn’t a typo). Now to put that into context, the old Lupine Edison 10 headlamp had a 900 Lumen output, which is equivalent to a 65W HP halogen bulb (i.e. a bright car headlamp). Obviously this sort of cutting edge technology doesn’t come cheap, the Betty 12 has a list price of €990 (about £690). Now some people might consider £690 to be a tad expensive for a front light (even if you can use it as head torch for night skiing, as the Lupine web site suggests), it is more aimed at 24 hour race enthusiasts and people with deep pockets, than the everyday commuter (although Lupine try to suggest otherwise).

Oddly, Lupine only do front lights, so in my search for a more affordable front light and a matching rear light I turn to DiNotte. Ok, so the front lights only knock out between 200 and 600 Lumen (depending on model), but that still beats a candle in a jam jar and even most of the lights you will find in you local bike shop. However, what makes DiNotte special is not their front lights, no it’s the 140 Lumen rear lights. They really make a difference. DiNotte tail light (85K) So if there is anyone reading this who would like to know what I really would like this Christmas, well this combo would do nicely… or if you really feeling generous one of these!

More more posts about cycle lights:

Possibly Related Posts: (automatically generated)

Do NOT follow this link or you will be banned from the site!